WAVE WEBQUEST

> Basic Electromagnetic Wave Properties

http://micro.magnet.fsu.edu/primer/java/wavebasics/index.html

- What happens to the Energy and Wavelength when you increase Frequency?
- What happens to the Energy and Wavelength when you decrease Frequency?
- List 5 colors and their corresponding Frequency and Wavelength

• What happens to the wave and color of the wave when you increase or decrease the amplitude?

Changing Sounds

http://www.bbc.co.uk/schools/ks2bitesize/science/physical_processes/changing_sounds/play.shtml

• Load Full Screen and work through the examples of playing sounds and sorting sounds.

> Talking about Sound and Music

http://cnx.org/content/m13512/latest/

- Read the web page. When you get to the section **Wave and Sound Interaction** follow the link that says Click here. Now for each of the tabs, do the following
- For starters, in the lower box on the right-hand side under "Audio Control", click on the box "Audio enabled".

- Within the "Audio Control" box, click on "Listener". This will allow you to hear the waves the person in the application is hearing.
- Adjust the "Amplitude" bar. How does the wave look differently? How does it affect the sound?
- Slide the "Frequency" bar. How does this affect how the waves appear as they travel to the listener. How does the pitch change to the listener?

Give short answers:

1. Can sound travel through empty space? Why or why not?

2. How are sound waves like water waves? How are they not like water waves?

Primary Colors of Light and Pigments

- http://www.teachersdomain.org/asset/lsps07_int_lightpigment/
 - What is a photon? Are all photons alike?
 - When white light goes into a blue filter, blue light comes out. How did the blue get into the light?
 - When red light passes through a green filter, no light gets through. What happens to it?

- When red light is projected onto a white surface, red light is reflected. Blue light will similarly be reflected as blue. When both are projected onto a white surface, we see neither red nor blue. Is the red light still there? Is the blue light still there? What happened?
- Explain why a sweater looks red. Start with sunlight or white light from a lamp striking the sweater.

> Tour of the Electromagnetic Spectrum

http://www.pbs.org/wgbh/nova/gamma/spectrum.html

Take the Self-Guided Tour and answer the following questions:

- What are electromagnetic waves?
- What is a photon?
- Name one manufactured device or natural phenomenon that emits electromagnetic radiation in each of the following wavelengths: radio, microwave, infrared, visible light, ultraviolet, X-ray, and gamma ray.

• Which type(s) of electromagnetic radiation do human bodies emit? Which type(s) can our senses detect?

• List three ways that electromagnetic radiation is used to improve our everyday lives.